Of course! Creating a custom trackbar in Python is a common task, especially in computer vision applications. The most popular library for this is OpenCV.

I'll guide you through it, starting with the simplest case and then moving to more advanced, flexible solutions.
Method 1: The Classic OpenCV Way (Simple & Direct)
This is the most straightforward method, perfect for creating a trackbar that controls a parameter in real-time (like a threshold value). The trackbar is attached directly to an OpenCV window.
Key Concepts:
cv2.createTrackbar(): This function creates a trackbar and attaches it to a specified window.cv2.getTrackbarPos(): This function retrieves the current integer value of the trackbar.cv2.setTrackbarPos(): This function programmatically sets the trackbar's position.
Example: Live Thresholding with a Trackbar
This example creates a window with a trackbar. As you move the slider, the threshold for a binary image updates in real-time.
import cv2
import numpy as np
# --- 1. Setup ---
# Create a black image and a window to display it
img = np.zeros((300, 512, 3), np.uint8)
window_name = 'Image'
cv2.namedWindow(window_name)
# --- 2. Define the Callback Function ---
# This function is called every time the trackbar is moved.
# Its arguments are the trackbar position and the user data (we'll pass the image).
def nothing(x):
"""Callback function for the trackbar. Does nothing, but is required."""
pass
# --- 3. Create the Trackbar ---
# cv2.createTrackbar(trackbarName, windowName, initialValue, maxValue, callbackFunction)
trackbar_name = 'Threshold'
initial_value = 0
max_value = 255
cv2.createTrackbar(trackbar_name, window_name, initial_value, max_value, nothing)
# --- 4. Main Loop ---
while True:
# Get the current position of the trackbar
threshold_value = cv2.getTrackbarPos(trackbar_name, window_name)
# Create a dummy grayscale image for thresholding
# In a real app, you'd load an image here, e.g., img_gray = cv2.imread('image.jpg', 0)
dummy_gray_img = np.ones((300, 512), dtype=np.uint8) * 128 # A mid-gray image
# Apply the threshold
_, thresh_img = cv2.threshold(dummy_gray_img, threshold_value, 255, cv2.THRESH_BINARY)
# Display the thresholded image in the window
cv2.imshow(window_name, thresh_img)
# Wait for a key press. If 'q' is pressed, break the loop.
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break
# --- 5. Cleanup ---
cv2.destroyAllWindows()
How to Run:

- Save the code as a Python file (e.g.,
trackbar_example.py). - Make sure you have OpenCV installed (
pip install opencv-python). - Run from your terminal:
python trackbar_example.py. - A window will appear. Move the slider to see the threshold effect. Press 'q' to quit.
Method 2: Using Tkinter (More GUI Flexibility)
If you are building a larger GUI application using Tkinter, you might want to embed the trackbar within a Tkinter window. Tkinter has its own slider widget called Scale.
This example shows how to create a Tkinter window with a slider that updates an OpenCV image.
Key Concepts:
tk.Scale: The Tkinter widget for a slider/trackbar.cv2.cvtColor(): To convert between OpenCV's BGR format and Tkinter's PhotoImage-compatible RGB format.PIL.ImageandImageTk.PhotoImage: To convert a NumPy array (OpenCV image) into a format Tkinter can display.
Example: Tkinter Trackbar Controlling an OpenCV Image
import cv2
import numpy as np
import tkinter as tk
from tkinter import ttk
from PIL import Image, ImageTk
class App:
def __init__(self, root):
self.root = root
self.root.title("Tkinter Trackbar with OpenCV")
# --- 1. Create a dummy image ---
self.img = np.zeros((300, 512, 3), np.uint8)
self.img[:] = (128, 128, 128) # Fill with gray
# --- 2. Create Tkinter Widgets ---
# Frame to hold the image
self.image_frame = ttk.Frame(self.root, padding="10")
self.image_frame.pack()
# Label to display the image
self.label = ttk.Label(self.image_frame)
self.label.pack()
# Frame to hold the slider
self.slider_frame = ttk.Frame(self.root, padding="10")
self.slider_frame.pack()
# The Tkinter Scale (trackbar) widget
# from_=min, to=max, orient=horizontal, command=self.update_image
self.slider = ttk.Scale(
self.slider_frame,
from_=0,
to=255,
orient=tk.HORIZONTAL,
length=300,
command=self.update_image
)
self.slider.set(128) # Initial value
self.slider.pack()
# Initial image display
self.update_image()
def update_image(self, value=None):
"""Callback for the slider. Updates the image based on slider value."""
# Get the value from the slider
slider_value = int(self.slider.get())
# Modify the image based on the slider value
# For example, change the blue channel
self.img[:, :, 0] = slider_value
# Convert the image from BGR (OpenCV) to RGB (Tkinter/Pillow)
img_rgb = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)
# Convert to a PIL Image
img_pil = Image.fromarray(img_rgb)
# Convert to a Tkinter PhotoImage
photo = ImageTk.PhotoImage(image=img_pil)
# Update the label's image
self.label.configure(image=photo)
# Keep a reference to prevent garbage collection
self.label.image = photo
if __name__ == "__main__":
root = tk.Tk()
app = App(root)
root.mainloop()
How to Run:
- Save the code.
- Make sure you have the required libraries:
pip install opencv-python pillow. - Run:
python tkinter_trackbar_example.py. - A Tkinter window will appear. Drag the slider to see the blue channel of the image change.
Method 3: Using PySide6 / PyQt6 (Modern & Powerful GUI)
For professional, modern desktop applications, PySide6 (or its twin PyQt6) is an excellent choice. It has a more powerful slider called QSlider.

This approach is similar to the Tkinter method but uses Qt's widgets and signal/slot mechanism.
Example: PySide6 Trackbar
import sys
import cv2
import numpy as np
from PySide6.QtWidgets import QApplication, QMainWindow, QLabel, QSlider, QVBoxLayout, QWidget
from PySide6.QtCore import Qt
from PySide6.QtGui import QImage, QPixmap
class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("PySide6 Trackbar")
self.setGeometry(100, 100, 600, 400)
# --- 1. Create a dummy image ---
self.img = np.zeros((300, 512, 3), dtype=np.uint8)
self.img[:] = (128, 128, 128)
# --- 2. Create Widgets ---
self.image_label = QLabel()
self.image_label.setAlignment(Qt.AlignCenter)
self.slider = QSlider(Qt.Horizontal)
self.slider.setMinimum(0)
self.slider.setMaximum(255)
self.slider.setValue(128)
self.slider.valueChanged.connect(self.update_image)
# --- 3. Layout ---
layout = QVBoxLayout()
layout.addWidget(self.image_label)
layout.addWidget(self.slider)
container = QWidget()
container.setLayout(layout)
self.setCentralWidget(container)
# --- 4. Initial display ---
self.update_image()
def update_image(self):
"""Slot connected to the slider's valueChanged signal."""
value = self.slider.value()
# Modify image (e.g., green channel)
self.img[:, :, 1] = value
# Convert NumPy array to QImage
# QImage needs to be in RGB format
height, width, channel = self.img.shape
bytes_per_line = 3 * width
q_img = QImage(self.img.data, width, height, bytes_per_line, QImage.Format_RGB888).rgbSwapped()
# Convert QImage to QPixmap and set it to the label
pixmap = QPixmap.fromImage(q_img)
self.image_label.setPixmap(pixmap.scaled(self.image_label.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation))
if __name__ == "__main__":
app = QApplication(sys.argv)
window = MainWindow()
window.show 